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Introduction and Motivation 

 All cryptographic implementations need countermeasures (CM)  

    against side-channel attacks 

 

 Designing and deploying a CM on a dedicated platform is costly 

 Development time (e.g., balanced routing for logic styles) 

 Execution time (e.g., additional time for random dummy cycles) 

 Physical resources (e.g., more logic for masked data paths/S-boxes) 

 

 For strong protection, several CMs need to be combined  (which are even  

    often very cipher-dependant) 

 

 Ideally: Given a set of generic and efficient CMs to establish  

    (basic) SCA protection on a specific processing platform 
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Introduction and Motivation 

 This talk: proposing countermeasures for FPGAs  

 Generically usable with most (symmetric) cryptosystems  

 Applicable to many (Xilinx) FPGA devices 

 Predesigned as (hard) macros just to be added to an application 

 

 Portfolio of countermeasures: 

 FPGA-specific noise generators (using registers, memories, short circuits) 

 Clock disalignment using Digital Clock Managers (DCM) 

 Memory masking in dual-ported memories 

 Detector for input clock manipulations (prevent down-clocking) 
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Implementing Noise Generators in FPGAs 

 Common design: application  

    including cryptographic core 

 

 Noise generation strategy 

 Configure remaining, 

routable slices (flip-flops) 

as cyclic shift registers  

 

 Preload sequence „01“  

into shift registers 

 

 Run noise generator  

in synch with crypto core  
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Proposal #1: Using Shift Register LUTs (SRL) 

 Logic elements consist of LUTs and FFs 

 Special (alternative) LUT function: 

    Shift Register LUT (SRL) 

 n-bit register length (n=16 or n=64) 
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Proposal #1: Using Shift Register LUTs (SRL) 

 Logic elements consist of LUTs and FFs 

 Special (alternative) LUT function: 

    Shift Register LUT (SRL) 

 n-bit register length (n=16 or n=64) 

 Preload SRL with „01“ combination 
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Proposal #1: Using Shift Register LUTs (SRL) 

 Logic elements consist of LUTs and FFs 

 Special (alternative) LUT function: 

    Shift Register LUT (SRL) 

 n-bit register length (n=16 or n=64) 

 Preload SRL with „01“ combination 

 Create r cyclic rings using s cascaded SRLs 

 SRLs are clocked according to free-running RNG 
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 Write collision when concurrently writing data to 

    the same address of dual-ported memories (BRAM) 

 

 Opposite driving directions in inverter pair 

    result in uncertain outcome [GP09,G10] 
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Proposal #2: Write Collisions in BRAMs 

 Write collision when concurrently writing data to 

    the same address of dual-ported memories (BRAM) 

 

 Opposite driving directions in inverter pair 

    result in uncertain outcome [GP09,G10] 

 

 Likely to exhibit higher power consumption 

 

 Idea for noise generation: 

 Create a write collision generator 

 Create collisions according to output 

of an RNG 
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Proposal #3: Short Circuits in FPGAs 

 Short circuits (SC) can be created in  

    the FPGA‘s routing network [BKT10] 

 

 SCs in output multiplexers of switch boxes 

 

 Power restriction limits currents < 100 µA 

 

 Establishing controlled SCs requires 

    manual routing (via XDL) 
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Proposal #3: Short Circuits in FPGAs 

 Package controlled SC into hard macro 

 

 Instantiate r controlled SC units  

    on FPGA 

 

 Distribute SCs among different  

    power domains to distribute load 
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Proposal #4: Clock Disalignment using DCMs 

 Digital Clock Managers (DCM) support 

    concurrent phase-shift channels 

 Clock buffers can be configured as 

    glitch-free clock multiplexers 

 Cascading clock muxes result in a 

    randomly delayed, phase-shifted clock 
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Proposal #5: Data Masking with BRAMs 

 Round functions often have linear  

    and non-linear part (S-box in memory) 

 CM: implement masking on data path 

 Implementation idea: 

 Push masking scheme into 

dual-ported memory (S-box) 

 Perform mask update by  

concurrent process 

 Simplification: use same random  

    mask for (few) consecutive rounds  

     (first-order SCA-resistant only!) 
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Proposal #5: Data Masking with BRAMs 

 Dual-ported BRAM allows simultaneous use and mask update of Q-box 

 Active context (Q-box #1) used by cipher operation 

 Inactive context (Q-box #2) updates mask by concurrent process 

 Context switch after update and cipher process are finished 
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Proposal #5: Data Masking with BRAMs 

 Dual-ported BRAM allow simultaneous access and mask update in Q-box 

 Active context (Q-box #1) used by cipher operation 

 Inactive context (Q-box #2) updates mask by concurrent process 

 Context switch after update and cipher process are finished 
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Proposal #5: Data Masking with BRAMs 

 Dual-ported BRAM allow simultaneous access and mask update in Q-box 

 Active context (Q-box #1) used by cipher operation 

 Inactive context (Q-box #2) updates mask by concurrent process 

 Context switch after update and cipher process are finished 

B
R

A
M

 

Q-box #4 
(inactive, 
using m4)  

Q-box #3 
(active, 

using m3) 

Current Mask m: 

4E9A25C321… 

 



24 CHES 2011 | Nara, Japan | Tim Güneysu 

Agenda 

 Introduction and Motivation 

 Design Proposals for FPGAs 

 Noise Generation 

 Clock Disalignment 

 Memory Masking 

 Evaluations 

 Conclusions 
FPGA 



25 CHES 2011 | Nara, Japan | Tim Güneysu 

Evaluation based on AES T-Table Implementation 

 

 

 

 

 

 

 AES-128 T-Table implementation/128-bit data path (16 T-Tables, 21 cycles) 

 SASEBO board populated with Xilinx Virtex-II Pro FPGA (xc3vp7) 

 Measuring setup: Diff. Probe at LeCroy WP715Zi 1.5 GHz@2GS/s 

 Correlation Power Analysis (CPA) using Hamming Weight (HW) model 
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Evaluations: CPA on individual CMs  

Plain AES-128@24Mh: 

104 measurements 

 3,000 traces req. 

Individual/all noise generators combined: 

Parameters used: r=16 (instances), s=36 (width) 

5x104 measurements 

 8,000 traces req. 

Clock disalignment  

8 phase shift steps 

107 measurements 

 3,000,000 traces req. 

Memory masking with dual-ported BRAMs 

108 measurements 

 Not successful (using first-order attack) 
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Evaluations: Efficiency and Resources 

 To achieve higher SCA protection, combine several countermeasures 

 CMs are quite efficient (parameters used: s=16 (instances), r=36 (unit width)) 

 

 

 

 

 

 

 

 

(FF = Flip-Flop, LUT = Look-Up-Table, CB = Clock Buffer,  

 DCM=Digital Clock Manager, BRAM = Block RAM) 
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Conclusions 

 Proposed five generic countermeasures specific for FPGAs  

    (implemented using resources usually wasted otherwise) 

 Noise generators 

 Clock disalignment and manipulation detection 

 Memory masking using dual-ported BRAMs 

 Memory masking method provides solid protection against first-order attacks 

 Combining countermeasures might also provide protection against  

    higher-order attacks ( still needs to be evaluated!) 

 For third-party evaluation, PROM files for SASEBO are provided 

    available after next week at http://www.emsec.rub.de/research/publications 

 

 

    

    

Ende. Thank you! 

http://www.emsec.rub.de/research/publications

